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Abstract
It is demonstrated that the origin of the low-Q features in the static
structure factor of disordered solids, such as the first sharp diffraction peak,
can be understood by studying structural characteristics of their crystalline
counterparts. The positionally disordered lattice models exhibit the first
sharp diffraction peak at approximately the same position as in corresponding
disordered structures. The availability of the exact solution for lattice models
gives an opportunity to identify the reciprocal space vectors which contribute
most to this peak.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Structural properties of disordered solids are of great importance in the field of disordered
systems [1]. In spite of a big effort put into this area both from theoretical and experimental
sides there are still unsolved problems of considerable interest. One of the main structural
characteristics of solids which is available from x-ray and neutron diffraction experiments is
the static structure factor, S(Q), with Q being the magnitude of the scattering wavevector.
The Fourier transform of the static structure factor gives information about the pair distribution
function describing atomic density fluctuations on the microscopic level. Many disordered
solids exhibit a sharp feature in the range of Q ∼ 1–2 Å

−1
called the first sharp diffraction

peak (FSDP) [2] the nature of which is still rather debatable [3–9].
Several models have been suggested for the origin of the FSDP over the years. Probably,

the most popular explanation of the FSDP is provided by the presence of local quasi-crystalline
planes (layers) or equivalently quasi-Bragg planes [2, 7, 8, 10, 11]. An alternative model relates
the FSDP to the spatial arrangements of voids in glasses [12].

The aim of this paper is to present a simple model of the FSDP in topologically disordered
solids which reveals its origin and is based on the use of pseudo-crystalline planes characteristic
of relevant crystalline counterparts. Below, we calculate analytically the static structure factor
for positionally disordered lattice models and then demonstrate that it can mimic at least
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the FSDP in glasses. Availability of analytical expression for S(Q) gives an opportunity to
understand all the contributions to the FSDP in lattice models and hopefully in corresponding
glasses.

2. Pair distribution function for disordered lattices

We start with the derivation of the analytical expression for the static structure factor in
positionally disordered lattices. Let us consider a 3D regular lattice defined by unit cell
vectors ai (i = 1, . . . , 3) with Nuc atoms in the unit cell characterized by position vectors
R j ( j = 1, . . . , Nuc). The unperturbed position vector, r(0)

n, j , of an arbitrary atom in the unit cell

of the regular lattice is r(0)

n, j = R j +an where an = n1a1 +n2a2 +n3a3 (n = (n1, n2, n3) ∈ Z
3).

Therefore the set of vectors {r(0)
n, j} defines a crystalline atomic lattice of any symmetry (e.g. a

Bravais lattice for j = 1). Assume that a static stochastic independent displacement field, un, j

is applied to such a lattice, so that the atomic position vectors are given by rn, j = r(0)

n, j + un, j

with un, j being random vectors normally (for concreteness) distributed around zero expectation
values, E(un, j ) = 0. The atoms within the unit cell can be of different types, such that we
assume possible different variances for each species, but consider, for simplicity, only the
isotropic displacement field, Var(u(α))n, j = σ 2

j , where superscript α = 1, . . . , 3 marks the
Cartezian directions. The normal distributions for the displacement field can be associated
with the thermal atomic vibrations in crystals [13].

First, we evaluate the total pair distribution function [14], g(r),

g(r) = V

N2

〈∑
i �=i ′

δ(r − rii ′)

〉
, (1)

where i ≡ (n, j) is an atomic index, rii ′ = |rn′, j ′ − rn, j | is the distance between atoms i
and i ′, V stands for the volume of the crystal containing N atoms and angular brackets mean
configurational averaging. The pair distribution function is simply related to its cumulative
function, Ñ(r), in the following fashion,

g(r) = 1

4πr 2

d〈Ñ (r)〉
dr

, (2)

where 〈Ñ (r)〉 is the number of atoms within the sphere of radius r centred at one of the atoms
(which is not included in counting) and averaged over all the atoms (being the centres of the
spheres) in the system. The static structure factor measurable in scattering experiments is
related to g(r) according to

S(Q) = 1 + 4πρ0

Q

∫ ∞

0
r
[
g(r) − 1

]
sin(Qr) dr, (3)

where ρ0 = N/V is the mean atomic concentration.
In order to calculate the pair distribution function for disordered lattices, we evaluate an

auxiliary function N(r, R) being the total number of atoms enclosed by a sphere of radius r
centred at position given by R [15–17],

N(r, R) =
∫

r′−R|�r
ρ(r′) dr′, (4)

where

ρ(r) =
〈∑

n, j

δ(r − rn, j )

〉
, (5)

is the number density.
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The evaluation of number of regular lattice points (σ j = 0) within a sphere of radius r and
its fluctuations around expected value is a known problem in the number theory [15–18] and a
similar method can be used for disordered lattices. Applying the Poisson summation formula
and evaluating Gaussian integrals we obtain,

N(r, r(0)

n, j ) = 4πr 3ρ0

3
+ ρ0

∑
G �=0

(
2πr

G

)3/2

J3/2(Gr)
1

Nuc

Nuc∑
j ′=1

e−iG·R j ′ j −G2σ 2
j ′/2

, (6)

where G are the reciprocal lattice vectors, R j ′ j = R j − R j ′ , and J3/2(x) is the Bessel function.
In the limiting case of a regular Bravais (Nuc = 1) lattice with σ j = 0, this expression for
N(r, r(0)

n, j ) coincides with the known result [15–17]. Equation (6) is obtained for the number of

disordered lattice points within the sphere centred at the regular lattice point r(0)

n, j . In order to

obtain Ñ (r), used in the definition of g(r) (see equation (2)), we place the origin of the sphere
at the point coinciding with rn, j , average over this position and then subtract the contribution
due to the atom displaced around r(0)

n, j . The resulting expression for Ñ(r) after averaging over
the unit cell reads,

Ñ (r) = 4πr 3ρ0

3
+ ρ0

∑
G �=0

(
2πr

G

)3/2

J3/2(Gr)
1

N2
uc

∑
j j ′

e−iG·R j ′ j −G2σ 2
j ′/2−G2σ 2

j /2

− 1

Nuc

Nuc∑
j

[
erf(r/2σ j ) − r√

πσ j
e−(r/2σ j )

2

]
, (7)

where erf(x) is the error function. The last term in equation (7) accounts for the atom at the
origin of the sphere not included in Ñ (r).

The pair distribution function is obtained from equation (7) by differentiation with respect
to r according to equation (2),

g(r) = 1 +
∑
G �=0

sin(Gr)

Gr

1

N2
uc

∑
j j ′

e−iG·R j ′ j −G2σ 2
j ′/2−G2σ 2

j /2

− 1

ρ0 Nuc

Nuc∑
j

(
4πσ 2

j

)−3/2
e−(r/2σ j )

2
. (8)

It follows from the above expression that the pair distribution function contains many oscillating
components ∝ sin(Gr) which decay according to a power law at large distances, i.e. ∝ 1/r . For
strongly disordered lattices, Gσ j � 1, all the oscillations corresponding to large magnitudes of
the reciprocal lattice vectors are suppressed and only one component with minimal value of G
survives. This explains the known singular frequency oscillations of g(r) in strongly disordered
regular lattices [7].

The static structure factor is the Fourier transform of g(r) (see equation (3)), i.e.

S(Q) = 1 + 2π2ρ0

Q2

∑
j j ′

e−G2σ 2
j ′/2−G2σ 2

j /2
∑
G �=0

e−iG·R j ′ j δ(Q − G) − 1

Nuc

Nuc∑
j

e−(Qσ j )
2
, (9)

which contains an analytic contribution due to diffuse scattering, 1 − N−1
uc

∑
j e−(Qσ j )

2
, and

a singular contribution from the δ-functional Bragg peaks with weighted intensities [13]. In
the case of homogeneous displacement field, σ j = σ , the static structure factor for disordered
lattice can be expressed through the static structure factor of unperturbed lattice, Scryst(Q), as

S(Q) = 1 − e−(Qσ )2 + e−(Qσ )2
Scryst(Q), (10)
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with

Scryst(Q) = 2π2ρ0

Q2

∑
G �=0

∑
j j ′

e−iG·R j ′ j δ(Q − G). (11)

The last expression for Scryst(Q) can easily be obtained using the Poisson summation formula
in the definition of S(Q) = N−1

∑
i,i ′ eiQ·Rii′ and then performing orientational averaging over

Q directions. Equation (10) with Q replaced by Q describes the effect of diffuse scattering by
uncorrelated thermal-like atomic displacements and it is well-known in the diffraction theory
[13]. However, its orientational averaging leading to equations (10) and (11) usually is not
undertaken because it is irrelevant for crystals but certainly is necessary for isotropic glassy
systems.

Equations (8) and (9) for the pair distribution function and static structure factor for
disordered lattices are the main formulae which will be used in the following section for
interpretation of the structural characteristics of topologically disordered systems. These
expressions can be easily modified for different types of the displacement field in a similar
manner to those derived in [19], and the anisotropy in atomic displacements can also be
incorporated straightforwardly.

3. Pair distribution function for topologically disordered systems

In the previous section, we derived the expressions for the pair distribution function and
static structure factor for positionally disordered lattices of any symmetry. The availability
of analytical expressions for these characteristics gives us an advantage in understanding the
features of these functions and suggests a possible use of them in the interpretation of similar
characteristics for real disordered systems. However, an obvious disadvantage of g(r) and
S(Q) given by equations (8) and (9) for such an interpretation comes from their quite different
behaviour as compared to that for real glasses. For the pair correlation function, this difference
is related to different decay laws at large distances, r → ∞. Namely, the envelope of the
pair distribution function for real glasses decays exponentially describing the damped density
oscillations [8–10] in contrast to the power-law decay ∝ 1/r of g(r) given by equation (8).
This difference in decay law of g(r) is reflected in the different shape of S(Q) for disordered
lattices and real glasses. For disordered lattices, the static structure factor is a set of δ-functions
superimposed onto the continuous diffuse scattering contribution (see the thin solid line in
figure 1). In glasses, the shape of S(Q) can be imagined as a similar contribution from diffuse
scattering and a superimposed contribution from broadened δ-functional peaks (cf the bold and
thin lines in figure 1).

As seen from figure 1, the position of the first Bragg peak for c-Si coincides with position
of the FSDP for a-Si. In many other materials, a similar correspondence between the FSDP
and the first Bragg peak in disordered systems and their crystalline counterparts has been
found [2, 7, 8, 10, 11, 23]. This leads us to a simple model which can be suggested as an
explanation of the functional form of the static structure factor in disordered materials. The
reciprocal lattice vectors, G, are well defined in crystals due to the existence of the translational
invariance in the system. In glasses, such an invariance is lost and the G-vectors no longer exist.
However, the presence of short-range order permits us to introduce pseudo-lattice (direct and
reciprocal) vectors which now are complex values with imaginary part of the pseudo-lattice
vector magnitude, G ′′, describing a typical inverse length scale of exponential decay of the pair
distribution function, and with the real part G ′ approximately coinciding with the magnitude
of the reciprocal lattice vectors, G ′ � |G|. A similar approach is well-known in the theory of
damped density oscillations in simple fluids [9, 24, 25]. In the Q-space, the use of complex
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Figure 1. Static structure factor for amorphous Si (a-Si) (experimental data [20, 21] shown by bold

solid line) and for positionally disordered crystalline Si (c-Si) (thin solid line) with σ 2 = 0.0059 Å
2

representing the mean squared displacement of Si atoms at T = 293 K [22].

reciprocal lattice vectors is equivalent to replacement of the δ-functional contributions by the
Lorentzians, i.e.

δ(Q − G) → 1

π

G ′′

(Q − G ′)2 + (G ′′)2
, (12)

with G being replaced by complex value G ′ + iG ′′. The back Fourier transform of
S(Q) (see equation (9)) with δ(Q − G) replaced by Lorentzians results in exponentially
decaying oscillating contributions with asymptotically surviving contribution characterized by
the smallest G ′′-value.

This simple heuristic argument (see equation (12)) allows the origin of the exponentially
damped density oscillations and the shape of the static structure factor in topologically
disordered systems to be explained. Namely, the shape of the static structure factor can be
imagined as being obtained by the Lorentzian broadening of the δ-functional contributions
in the corresponding crystalline counterpart. Consequently, the exponential decay of the pair
distribution function is governed by the smallest value of the imaginary part of the pseudo-
Bragg vectors in the crystalline counterpart.

In order to support the above model for the structural characteristics of topologically
disordered solids, we present some numerical evidences for two typical amorphous structures,
amorphous silicon (see figure 2) and vitreous silica, v-SiO2 (see figure 3) below. In both cases,
the following assumptions are made: (i) G ′ = |G| and (ii) G ′′ = λ = const. The first
assumption signifies the fact that the position of the peaks for glassy S(Q) mainly coincide
(at least for small values of Q) with the location of the δ-functions for the corresponding
crystalline static structure factor. The second assumption is rather simplistic and is related to
the lack of knowledge of broadening factors (G ′′) (a similar conjecture has been made in [10]).
This is due to the absence of a theory for the static structure factor in topologically disordered
solids. Experimental data for S(Q) provides the data only for the smallest value of G ′′ which
is equal to the inverse exponential decay length of the pair distribution function or equivalently
it coincides with the width of the FSDP. Typically (certainly, for a-Si and v-SiO2), a single
Bragg peak is the main contributor to the FSDP and thus the broadening for this peak can be
measured experimentally. For higher-Q peaks the situation is more complicated because many
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Figure 2. Static structure factor for amorphous silicon (experimental data [20, 21] shown by bold
solid line) and for positionally disordered crystalline silicon (the dashed line) using the same value

for σ 2
Si as in figure 1, and a broadening factor λ = 0.2 Å

−1
which is consistent with experimental

data [20, 21].

Figure 3. Static structure factor for vitreous silica (experimental data [26] shown by bold solid

line) and for positionally disordered α-cristobalite (the dashed line) with σ 2
Si = 0.016 Å

2
and

σ 2
Si/σ

2
O = 0.6 representing the mean squared displacements at T = 300 K (see [27] and references

therein) and the broadening factor λ = 0.3 Å
−1

[10].

Bragg peaks can contribute to a single peak in the glassy structure factor (e.g. two Bragg peaks
contribute to the second sharp diffraction peak in the case of a-Si; see figure 1) and evaluation
of the broadening factors for these peaks is ambiguous. Therefore, aiming at quantitative
agreement for the FSDP only, we assume that the broadening of all the Bragg peaks is the same
and is equal to that for the FSDP. This very crude assumption can hardly lead to a reasonable
agreement between the model and experimental data for static structure factor for Q-values
above the FSDP.

6



J. Phys.: Condens. Matter 19 (2007) 455215 S N Taraskin

As follows from figure 2, the FSDP in a-Si can indeed be well reproduced by Lorentzian
broadening of the first Bragg peak in c-Si (cf solid and dashed lines in figure 2 in the range
of the FSDP) which is formed by scattering from equally contributing planes {100}, {010},
{001} and {111} with |G| � 2.0053 Å

−1
. The split between next two broadened Bragg

peaks probably indicates that the broadening factors for them should be greater than for the
first Bragg peak in order to reproduce the second sharp diffraction peak in S(Q) for a-Si. A
similar picture is demonstrated in figure 3 for v-SiO2, where the FSDP is well reproduced by
broadened Bragg peaks in α-cristobalite describing scattering from {101} and {011} planes with
|G| � 1.546 Å

−1
.

4. Conclusions

In conclusion, we have presented a simple model for the first sharp diffraction peak in
topologically disordered solids. It is suggested that this peak originates from the first Bragg
diffraction peak of the crystalline counterpart, which is broadened by a Lorentzian. The
width of the Lorentzian is related to the imaginary part of the pseudo-Bragg vectors which
replace the reciprocal crystalline lattice vectors. The model is supported by calculations of the
static structure factor for a-Si and v-SiO2 using the exact expression for S(Q) in positionally
disordered lattices.

The present model gives an additional support to the models of the FSDP based on pseudo-
crystalline picture. In fact, it signifies the presence in glass of approximately identical structural
units with the same local atomic order as in crystalline counterparts. These structural units
(pseudo unit cells) influence atomic vibrational properties of glasses and result in the well-
known pseudo-dispersion of disordered phonons [11, 23, 28]. Therefore, we believe that this
simple model captures the main features of the FSDP and sheds light on its origin.
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